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Antisense Applications for Biological Control
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Abstract Although Nature’s antisense approaches are clearly impressive, this Perspectives article focuses on the
experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense
oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small
interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson-Crick base
pairing in sequence-specific manner. ASOs generally result in destruction of the target RNA by RNase-H mediated
mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes
and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense
and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can
also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials,
although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find,
although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a)
Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and
(b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with
ASRs is the ‘‘Delivery Problem.’’ Various liposomal vehicles have been used for systemic delivery with some success, and
recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now
being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the
best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental
improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward
the bedside has been agonizingly slow. J. Cell. Biochem. 98: 14–35, 2006. � 2006 Wiley-Liss, Inc.
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NATURE’S ANTISENSE APPROACH

The importance of ‘‘small RNA guides’’-21–
30 nt RNAs, including microRNAs (miRNAs)
and small interfering RNAs (siRNAs)—in regu-
lation of an amazing variety of biological path-
ways is just now becoming apparent. Production
of the various types of small RNAs utilize
common pathways, including dsRNA-specific
endonucleases (e.g., Dicer), dsRNA binding

proteins, and small RNA binding proteins
referred to as Argonautes [Zamore and Haley,
2005]. It is now clear that miRNAs represent a
large class of riboregulators, which regulate
expression of at least one-third to one-half of all
human genes [Lewis et al., 2005]. Likewise,
the extent to which antisense transcripts are
involved in regulation of cellular metabolism
is also becoming clearer. Data from the Riken
Genome Exploration Research Group, Geno-
meScience Group, and Fantom Consortium
[Katayama et al., 2005] have now shown that a
large proportion of the genome (at least 50%)
produces transcripts in both sense (S) and
antisense (AS) orientations, and that AS tran-
scripts often tie neighboring genes into linked
transcriptional units. Expression profiling has
generally revealed concordant regulation of A/
AS pairs, and further analyses have shown in
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representative cases that perturbation of the
AS RNA transcript alters expression of the S
RNA transcript. While A/AS hybrids could have
direct RNA interference (RNAi) effects, the
concordant regulation observed for most S/AS
transcript pairs [Katayama et al., 2005] would
seem to argue against this pathway, so that the
effects of AS transcription may not even involve
dsRNA formation. For example, this appears to
be the case of IGF2R [Sleutels et al., 2003] as
well as IGF2 [Vu et al., 2003]. siRNA effects
encompass direct effects on transcription in the
nucleus [Kawasaki and Taira, 2004; Morris
et al., 2004; Matzke and Birchler, 2005], as well
as heterochromatin formation [Wassenegger,
2005]. In this perspective, we will focus on
antisense reagents employed experimentally.

Antisense oligonucleotides (ASO) were first
used experimentally to inhibit viral replication
in cell culture [Stephenson and Zamecnik, 1978;
Zamecnik and Stephenson, 1978]. Since that
time, alternative antisense approaches have
been developed, including ribozymes (Rz),
DNAzymes (Dz), and small interfering RNAs
(siRNAs), which employ S/AS RNA regions.
This family of antisense reagents (ASR) has
become a powerful tool for target validation and
therapeutic purposes. ASRs act at the RNA
level: ASOs, generally 13–25 nt for experimen-
tal purposes, specifically hybridize with their
complementary targeted RNAs by Watson-
Crick base-pairing. They then induce target
RNA degradation by RNase-H, and/or block
protein translation. Rzs and Dzs are catalyti-
cally active oligonucleotide enzymes that not
only bind to, but also cleave, their target RNAs
enzymatically. siRNAs contain �20 nt S/AS
RNA regions; they trigger degradation of tar-
geted RNAs via the RNAi-induced silencing
complex (RISC; see [Filipowicz, 2005]).

Following the seminal studies of Zamecnik
and Stephenson, progress was modest until
DNA oligonucleotides became readily available.
Once ASOs became widely available, many
studies in the 1980’s documented their effects
on cells in culture, and in the early 1990’s ASOs
were increasingly tested in in vivo models.
Modifications were introduced to modify the
phosphodiester links between DNA bases, in
efforts to protect against breakdown by
nucleases in cells and blood, and various other
substitutions were introduced. A phosphor-
othioated antisense agent, VitraveneTM, devel-
oped by Isis Pharmaceuticals, represented the

first FDA-approved antisense therapy in 1998.
Methods for identifying/optimizing accessible
sites within targeted RNAs were being devel-
oped, and work was also aimed at delivering
the ASOs to certain locations. Sequencing of
the human genome has disclosed a plethora of
potential targets. We now have literally thou-
sands of targets, with hundreds of preclinical
animal studies, and some 20 clinical trials
ongoing. Recognition of miRNA regulation of
many biological processes, including develop-
ment, proliferation, apoptosis, carcinogenesis,
and the stress response [Croce and Calin, 2005;
Eis et al., 2005; Gregory and Shiekhattar, 2005;
Hatfield et al., 2005; He et al., 2005; Lu et al.,
2005; O’Donnell et al., 2005], is likely to further
expand ASR development.

The appeal of antisense approaches is that
they potentially provide highly specific, non-
toxic reagents for safe and effective therapeu-
tics of a wide variety of diseases, including for
example AIDS, Crohn’s disease, viral diseases,
psoriasis, asthma, cardiovascular disease, and
cancers.

ASRS AND THEIR APPLICATIONS

Antisense Oligonucleotides (ASO)

ASOs are in theory designed to specifically
modulate the transfer of the genetic information
to protein, but the mechanisms by which an
ASO can induce a biological effect are subtle and
complex. Although some of these mechanisms of
inhibition have been characterized, rigorous
proof for others is still frequently lacking.
Several mechanisms that explain how ASOs
inhibit translation have been proposed. The
most widely accepted involves the formation of
an RNA-ASO duplex through complementary
Watson-Crick base-pairing, leading to RNase
H-mediated cleavage of the target mRNA
[Crooke, 1998; Wu et al., 2004; Galarneau
et al., 2005]. Other proposed mechanisms
include prevention of mRNA transport, modu-
lation or inhibition of splicing, translational
arrest, and formation of a triple helix through
ASO binding to duplex genomic DNA, resulting
in inhibition of transcription.

RNase H is a ubiquitous enzyme that hydro-
lyzes the RNA strand of an RNA/DNA duplex.
Oligonucleotide-assisted RNase H-dependent
reduction of targeted RNA expression can be
quite efficient, reaching 80–95% downregulation
of protein and mRNA expression. Furthermore,
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in contrast to ASOs, which sterically block
ribosomal translation,RNaseH-dependentASOs
can inhibit protein expression when targeted to
many (accessible) regions of the mRNA. Thus,
whereas most steric-blocker ASOs are efficient
only when targeted to the 50- or AUG initiation
codon region, other ASOs can inhibit protein
expression when targeted to widely separated
areas in the target RNA [Larrouy et al., 1992;
Dean et al., 1994].

The importance of RNase H-induced cleavage
of mRNA has been demonstrated in at least
four systems, including wheat germ extract
[Cazenave et al., 1993], rabbit reticulocyte
lysate [Minshull and Hunt, 1986], Xenopus
oocytes [Shuttleworth and Colman, 1988],
and human leukemia cells [Giles et al., 1995].
RNase H-compatible ASO backbones (i.e.,
those which facilitate degradation of the bound
target RNAs by RNase H) include phosphodie-
sters, phosphorothioates, and 20-fluoro(20F)-
oligodeoxynucleotides [Wilds and Damha, 2000;
Damha et al., 2001]. Other modifications, inclu-
ding methylphosphonates, 20-methoxy (20MeO)-
oligoribonucleotides,peptidenucleicacids (PNAs),
and morpholino oligonucleotides, are not RNase
H compatible.

The precise mechanism by which RNase H
recognizes duplexes is not well understood.
Using chimeric oligonucleotides in which
20MeO-oligoribonucleotide phosphorothioates
were placed at the 30 and 50 termini of
the oligonucleotide, while the central region
remained phosphorothioate oligodeoxyribonu-
cleotide, Monia et al. [1993] demonstrated that
a 5-bp region of homology is sufficient to induce
RNase H activity. It is unclear if such a
remarkable lack of ‘‘stringency’’ also occurs
within cells. Despite this caveat, it has been
shown that Isis 3521, a 20-mer phosphorothio-
ate ASO targeted to protein kinase C (PKC)-a
mRNA, can also downregulate PKC-z, with
which it shares 11 bases of contiguous homology
[Benimetskaya et al., 1998]. This phenomenon
of cleavage of non-targeted mRNAs because of
partial hybridization may be a major concern
when ASOs are used to validate gene function.
Furthermore, although the use of chimeric
oligonucleotides can suppress this problem, it
does not appear to eliminate it altogether
[Monia et al., 1993; Giles et al., 1995].

Other oligonucleotide modifications (20-O-
alkyl, PNA, and morpholinos) may use different
mechanisms to inhibit protein expression, for

example, they can inhibit intron excision, a key
step in the processing of mRNA. Splicing occurs
during the maturation step and can be inhibited
by the hybridization of an oligonucleotide to the
50 and 30 regions involved in this process [Kole
and Sazani, 2001]. Such inhibition can lead to
the lack of expression of a mature protein [Giles
et al., 1999; Hudziak et al., 2000] or, as
numerous reports have shown, to the correction
of aberrant splicing and the restoration of a
functional protein [Sierakowska et al., 1996;
van Deutekom et al., 2001]. As would be
expected, most of the ASOs capable of inhibiting
splicing are not dependent upon RNase H
activity [Giles et al., 1999; Karras et al., 2001;
Mann et al., 2001].

Numerous reports in the literature also
demonstrate that modified ASOs, which lose
the ability to activate RNase H activity, can still
efficiently inhibit mRNA translation. This inhi-
bition may be attributable to the disruption of
ribosomes or to physically blocking the initia-
tion [Baker et al., 1997] or elongation steps of
protein translation. Steric blockade of transla-
tion can be demonstrated by the arrest of
polypeptide chain elongation. In an in vitro
system assay, [Dias et al., 1999] identified a
truncated protein after incubating a PNA
oligonucleotide with H-ras mRNA. This trun-
cated product had the same size as a truncated
protein produced by the RNase H-mediated
cleavage obtained when using a phosphodiester
ASO targeted to the same site.

ASO Therapeutics

Antisense therapeutics has seen its ups and
downs since the first antisense trial was
conducted for treatment of leukemia in 1992
[Reynolds, 1992], followed by the excitement
over FDA approval of the first antisense drug,
Vitravene (Fomivirsen), for the treatment of
CMV retinitis in 1998 [Roehr, 1998]. Currently,
there are about 30 clinical trials of various
Phases underway. Cancer is the major focus of
these ongoing trials using antisense therapies,
although a number of other diseases are also
involved (Table I). The targets of ASOs for
cancer treatment include genes involved in
cell growth, apoptosis, angiogenesis, and metas-
tasis. Unfortunately, a likely limitation for
ASO therapeutics for cancer may be the single
target approach. Even if the target is suc-
cessfully inhibited by ASOs, other path-
ways may be activated and compensate for the
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ASO-mediated inhibition. Another potential
problem is that in spite of the fact that major
decreases in target RNAs may be achieved,
complete inhibition is probably not realistic. For
example, one of the most advanced (Phase III)
antisense Clinical Trials recently reported dis-
appointing results for Affinitak (an ASO inhi-
bitor of PKC-a) for the treatment of non-small
cell lung cancer. In contrast, relatively recent
reports have shown promising preliminary
results for use of respiratory ASOs (RASONs)
for treatment of Asthma [Ball et al., 2003]. It is
noteworthy that after extensive efforts at
endogenous expression of antisense RNA by
plasmids and viral vectors in a variety of disease
models, viral delivery of antisense constructs
has also advanced to initial testing in patients.
VRX496 (a lentivirus vector encoding an
ASO targeted to HIV-1 env RNA) started its
phase II trial in 2005. Cancer vaccine, a cell
therapy using non-small cell lung cancer cell
lines genetically engineered to express an
ASO targeted to transforming growth factor-b
(TGF-b), has also been tested in patients with
lung cancer. With the emergence of new genera-
tions of modified oligonucleotides, and with
development of technologies for delivery and
identification of optimal accessible sites, ASO
therapeutics are moving closer to fulfilling their
potential in the clinic for diseases other than
cancer, such as cardiovascular disease, asthma,
psoriasis and Crohn’s disease.

There are a couple of recent developments
in the antisense field. First, Isis Pharmaceuti-
cals and Pfizer are collaborating to develop ASRs
using Isis’ RNAi technology for treatment of eye
diseases. Second, Hybridon is collaborating with
Novartis for drug discovery efforts for asthma
and allergy targeting the Toll-like receptor 9,
wherein Hybridon will contribute TLR9 ago-
nists developed using its ASO technology.

Ribozymes (Rz) and DNAzymes (Dz)

In the early 1980s, Cech et al. [1981] dis-
covered catalytic RNA–RNA enzymes that have
been termed ribozymes (Rz; [Kruger et al., 1982;
Guerrier-Takada et al., 1983; Khan and Lal,
2003; Puerta-Fernandez et al., 2003]). Although
there are different types of Rzs in experimental
usage, the most therapeutically relevant class is
the hammerhead Rz (hRz), which was iden-
tified by comparison of naturally occurring Rz
[Symons, 1992]. The modified hRz is fewer than
40 nucleotides long and consists of two sub-
strate-binding antisense arms (which hybridize
to the target RNA based on Watson-Crick base
pairing), flanking a central catalytic domain.
The catalytic activity of hRz cleaves the
substrate RNA at the sequence NUH (N, any
nucleotide; H, not guanosine). Obstacles to
the successful therapeutic application of Rzs
include target site identification, nuclease-
mediated degradation of the hRz, and limita-
tions in delivery to the target cell. Rzs are

TABLE I. ASOs in Clinical Trials

Product Company Target Disease Phase

Genasense Genta Bcl-2 Cancer III*
ISIS 2302 ISIS ICAM-1 Ulcerative colitis II
ISIS 113715 ISIS PTP-1B Diabetes II
ISIS 301012 ISIS ApoB-100 High cholesterol II
ATL-1102 ATL/ISIS VLA-4 Multiple sclerosis II
ATL-1101 ATL/ISIS IGF-1R Psonasis I
OXG-011 OncoGeneX/ISIS Clusterin Prostate cancer II
LY2181308 Lilly/ISIS Survivin Solid tumors I
EPI-2010 EpiGenesis Adenosine A1-R Asthma II
GTI 2040 Lorus RN-Reductase-2 Cancer II
GTI 2051 Lorus RN-Reductase-1 Cancer II
Resten-NG AVI NYC Restenosis II
Resten-MP AVI MYC Restenosis II
AVI-4126 AVI MYC Cancer, PKD II
AVI-4020 AVI WNV WNV infection II
AVI-4065 AVI HCV Hepatitis C I/II
CancerVaccine NovaRx TGF-b2 NSCLC II
Gem231 Hybridon PKA RI Solid tumors I/II
Gem92 Hybridon HIV gag AIDS I
LR/INX-3001 Gewirtz et al. MYB Chronic myelogenous

leuk.
II

HGTV-43 Enzo Biochem HIV-1 HIV infection I
VRX496 VIRxSYS HIV env HIV infection II
AEG35156 Aegera XIAP Solid tumors I
AS-EGFR SOG/NCI EGFR Cancer I

*In multiple trials.
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typically expressed in situ from a plasmid vector
transfected into the target cell, but they can be
produced in vitro or synthesized as oligonucleo-
tides and administered exogenously. Synthetic
Rzs, similar to ASOs, can incorporate modifi-
ed sugars and bases to improve stability by
increasing resistance to nucleases. However,
this is more problematic with Rzs than with
ASOs, because modifications that improve
stability dramatically interfere with the cataly-
tic activity. In one common modification of a
synthetic hRz, the 30 end is protected with an
inverted thymidine, the fourth nucleotide is a
20-C-allyl uridine surrounded by five unmo-
dified ribonucleotides, and the remainder of
the nucleotides has a 20MeO-ribose structure.
These modifications increase the half-life of the
ribozyme in serum from 1 min to 10 days
[Grunweller et al., 2003; Kurreck, 2003]. How-
ever, we have found that while 30-inverted Ts
dramatically increase stability in serum, they
do not increase stability of ASOs within cells
(unpublished).

A number of Rzs have reportedly been in early
stage (Phase I and II) clinical trials, although
little or no follow-up is readily available. This is
clearly not a sign of success, and one would
guess that delivery issues may be at the heart of
the problems. The first clinical trial using a hRz
targeted HIV [Rowe, 1996; Brower et al., 1998],
and another antiviral Rz was Heptazyme
(LY466700) that targeted the HCV genome.
ANGIOZYME, an hRz that targets vascular
endothelial growth factor, was examined in a
phase II trial for treatment of metastatic color-
ectal cancer, where it was tested in combination
with several chemotherapy agents. Another Rz
which started in cancer clinical trials, HER-
ZYME, was of a class of modified Rzs (so-called
Zinzymes) that has high catalytic activity under
physiological Mg2þ conditions and cleaves at
the triplet YGH (Y¼C or U; H, not guanosine),
with a half-life in human serum of >100 h.
HERZYME had 20-OMe modifications at all
bases except for two unmodified guanosines
and two 20-amino nucleotides. The substrate-
binding arms had phosphorothioate bonds and
an inverted 30–30 deoxyabasic sugar in one
substrate recognition arm. HERZYME targets
human epidermal growth factor-2, and was
tested in a Phase I trial to determine toxicity
and efficacy in breast and ovarian cancer
patients [Probst, 2000; Kurreck, 2003]. There
are now only two Rz clinical trials listed in the

Clinical Trials database. A very small (five
patient) study, listed as ‘‘completed,’’ examined
a retroviral construct encoding L-TR/Tat-neo
(vs. irrelevant) ribozymes targeting HIV in
peripheral blood stem cells which were given
to HIV patients with non-Hodgkin’s lymphoma
(again, no follow-up is readily available). The
only current study is evaluating the safety and
efficacy of use of ‘‘Autologous CD34þ Hemato-
poietic Progenitor Cells Transduced with Pla-
cebo or an Anti-HIV-1 Ribozyme (OZ1) in
Patients with HIV-1 Infection.’’ Both of these
studies circumvent delivery problems by treat-
ing target cells ex vivo.

Another category of site-specific cleaving
nucleic agents that has received attention is
that of catalytic DNAs. Small DNAs capable of
site-specific cleavage of RNA targets were
developed via in vitro evolution; DNA enzymes
(Dz) apparently do not exist naturally [Santoro
and Joyce, 1997, 1998]. Two different catalytic
motifs, with different cleavage site specificities,
were found via this process. The basic format of
Dzs is analogous to that of hRzs, with short
antisense regions flanking a central catalytic
domain. The most commonly used 10–23 Dzs
bind to their RNA substrates via Watson-Crick
base pairing with the antisense arms, inducing
site-specific cleavage of the bound target RNAs,
resulting in 20, 30-cyclic phosphate and 50-OH
termini (analogously to hRzs). Cleavage of the
target mRNAs results in their rapid destruc-
tion, and the Dzs (and Rzs) can recycle and
cleave multiple substrates. Dzs are relatively
inexpensive to synthesize and have good cata-
lytic properties [Cairns et al., 2002; Emilsson
and Breaker, 2002; Khachigian, 2002], making
them useful alternatives for either ASOs or Rzs.
Several applications of Dzs in cell culture have
been published including for example the
inhibition of veg F mRNA and consequent
prevention of angiogenesis [Zhang et al.,
2002], and inhibition of expression of the bcr/
abl fusion transcript characteristic of chronic
myelogenous leukemia [Wu et al., 1999]. A
drawback of Dzs compared to Rzs is that they
can only be delivered exogenously, but they can
be backbone-modified, perhaps allowing them
to be delivered systemically in the absence of a
carrier.

Theoretically, Rzs/Dzs would be expected to
have a clear advantage over ASOs, since each
Rz/Dz-molecule’s enzymatic activity could
result in cleavage of multiple copies of the target
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mRNA, whereas ASOs should be expected to
interact with only one target mRNA molecule.
A difficulty (in addition to effects on activity),
however, is that those modifications that
improve the stability of Rzs/Dzs also generally
increase the affinity for substrate mRNA (i.e.,
hybridization strength) and thus drastically
reduce the catalytic activity, since release of
Rz/Dz after cleavage is generally the rate-
limiting step in the catalytic cycle. Another
potentially important factor is that Rzs/Dzs
require special cleavage sites to trigger the
chemical step of the kinetic activity, not only
the accessible sites which are free for a simple
Watson-Crick base pairing. These considera-
tions are likely to contribute to the fact that
few Rzs/Dzs have progressed to clinical trials
[Opalinska and Gewirtz, 2002]. Although
future modifications or alternative RNA/DNA-
based enzymes yet to be described might yield
reagents more effective than ASOs, ASOs at
present seem to have the upper hand compared
to state-of-the-art Rzs/Dzs.

Small Interfering RNAs (siRNA)

RNA interference (RNAi) is increasingly
being employed as a strategy to provide stable
inhibition of gene expression. RNAi is a gene
silencing mechanism that was discovered
in Caenorhabditis elegans, when injection of
double-stranded (ds) RNA was found to cause a
specific and potent interference (i.e., down-
regulation) of the target gene product [Fire
et al., 1998]. This endogenous gene silencing
mechanism is a physiological process used by
eukaryotes (including mammals) to regulate
gene expression by reducing protein production.
RNAi can also be exploited as a reverse genetic
tool to study the function of genes associated
with human disease, and as a therapeutic to
treat disease. The recent interest in RNAi has
prompted publication of several reviews of the
molecular mechanisms responsible for this
phenomenon [McManus and Sharp, 2002;
Shuey et al., 2002; Caplen, 2003; Cerruti et al.,
2003; Dykxhoorn et al., 2003; Sandy et al., 2005;
Zamore and Haley, 2005].

Briefly, RNAi is initiated in C. elegans (and
many other eukaryotic organisms, including
Drosophila, Aradopsis, and mammals) when
dsRNA is cleaved by an RNase III-like enzyme
(DICER) into 21–23 base-pair (bp) dsRNA
products with two nucleotide 30 overhangs,
producing what is known as small interfering

RNAs (siRNAs; see McManus and Sharp [2002];
Wall and Shi [2003]). These siRNAs are then
unwound and associate with the complemen-
tary RNA, through the action of a multiprotein
complex known as the RISC, and the target
mRNA is cleaved within the region of comple-
mentarity to the siRNA. In plants, fungi and C.
elegans, the process is amplified by an RNA-
dependent RNA polymerase and results in
continual degradation of the target mRNA. In
mammalian cells, however, both dsRNA and
siRNA activate slightly different molecular
pathways. Long dsRNAs activate endogenous
dsRNA-dependent protein kinase (PKR), which
leads to phosphorylation of the translation
initiation factor EIF2a. The result is a general
cellular suppression of protein synthesis that
may lead to apoptosis [McManus and Sharp,
2002]. The presence of long dsRNA in mamma-
lian cells also stimulates interferon a and
bproduction (which have pro-apoptotic actions),
and activates RNase L, leading to widespread
degradation of cellular RNA. Although delivery
of siRNA into mammalian cells results in
knockdown of target gene expression, the effect
is transient because mammalian cells lack the
RNA-dependent RNA polymerase that is
required to amplify the process [Schwarz et al.,
2002; Cerruti et al., 2003; Stein et al., 2003]. For
sustained gene knockdown by RNAi in mam-
malian cells, siRNA can be produced by plasmid
vectors stably transfected into cells. The
requirement for stable transfection for effective
RNAi is likely to be a crucial limitation for
clinical utility [Chiu and Rana, 2002; Ramas-
wamy and Slack, 2002; Scherr et al., 2003; Shi,
2003].

There have been a few attempts to compare
the relative efficacies of RNAi and ASOs,
although such comparisons are complicated
by a number of factors. Although the siRNA
duplexes are more stable in cells than a single-
stranded antisense DNA molecule [Bertrand
et al., 2002], the various chemical modifications
to ASOs (discussed below) greatly enhance
their intracellular stability. Some groups have
reported that siRNA can be used at lower
concentrations than ASOs to achieve compar-
able reductions in gene expression [Bertrand
et al., 2002; Grunweller et al., 2003; Miyagishi
et al., 2003], although others have found
that ASOs and siRNAs have similar potency
[Vickers et al., 2003]. There are some problems
with various comparisons, however. One such

AS Biocontrol 19



problem may be that the most efficient target
site for an ASO may not function efficiently for
an siRNA, and another is that modifications
introduced for stability are likely to differ.
Further studies are necessary to determine
which technology is more efficient, when both
the ASO and siRNA are designed with optimized
modifications and target site, and to reveal the
physiological basis of apparent differences in
RNA sequences optimally targeted by ASO and
siRNA (see below). In an interesting twist, a
combination of ASO and siRNA was recently
used to downregulate the expression of P2X3 (a
receptor mediating pain signaling). Enhanced
reduction in P2X3 mRNA and protein levels was
observed when the ASO and siRNA were used in
combination [Hemmings-Mieszczak et al.,
2003], and this type of mixed treatment may be
useful to achieve optimal efficacy while reducing
untoward side effects.

The relative therapeutic merits of the two
technologies have recently been reviewed
[Thompson, 2002; Grunweller et al., 2003;
Zender and Kubicka, 2004; Tong et al., 2005].
It appears that ASOs afford a number of
advantages over siRNA reagents; these include
greater flexibilities in chemistry, lower synth-
esis costs, and relative ease of delivery to the
target cell. Furthermore, present state-of-the-
art ASOs are much more resistant to nucleases
than current siRNAs, although chemical mod-
ification of siRNAs is a burgeoning (perhaps
bludgeoning) field. Finally, there exists an
extensive literature describing the pharmaco-
kinetics and toxicology of ASOs in animal
models, and relevant experience has been
gained from a considerable number of clinical
trials using ASO reagents. In contrast, precli-
nical pharmacokinetic and toxicological studies
of RNAi therapeutics are only just beginning
to appear in the literature [Kurreck, 2003;
Gleave and Monia, 2005], and problems with
non-specific effects of siRNAs have been noted.
For example, siRNA administration has
been shown to trigger widespread interferon-
mediated [Sledz et al., 2003], and other effects
[Frantz, 2003]. Off-target effects have also been
clearly documented by gene array expression
analysis [Jackson et al., 2003].

ACCESSIBLE SITES FOR ASR TARGETING

Although the AUG start code and 50-end
untranslated region are often arbitrarily used

for antisense targeting, in practice, only a few
complementary ASOs can successfully hybri-
dize to a targeted mRNA [Tu et al., 1998]. It is
assumed that this is largely because of problems
of target accessibility, which in turn may be
because of the secondary or tertiary mRNA
structure and/or to the proteins bound to the
RNA.

Computational Prediction

To define the best mRNA hybridization sites,
several predictive methods have been devel-
oped. Ding and Lawrence [2001] proposed a
method based on the determination of the RNA
structures using algorithms and thermody-
namic and structural properties of the RNA.
Zuker (http://www.bioinfo.rpi.edu/applications/
mfold/) used a similar approach to select
effective ASO sites. A number of groups have
used a systematic alignment of computer-pre-
dicted secondary structures of local regions of
the targeted RNA to identify favorable local
target sequences, and then designed more
effective ASOs. Using this approach, 17 of the
34 ASOs tested showed significant inhibition
(>50%) of ICAM-1 expression in mammalian
cells [Patzel et al., 1999; Scherr et al., 2000;
Sczakiel, 2000]. Other selection methods have
been based on the determination of melting
temperatures [Chiang et al., 1991] or the free
energies of formation of the ASO/RNA duplexes
[Stull et al., 1992; Ding and Lawrence, 1999].
Unfortunately, it is frequently observed that
only a small fraction of ASRs engineered using
such predictions give rise to significant reduc-
tions in target RNA levels within cells.

In Vitro Library Selection

Various methods have used combinatorial
ASOs to identify hybridization sites directly
within the RNA. These sites are revealed by
RNase H cleavage [Lloyd et al., 2001; Sohail
et al., 2001], microarrays [Mir and Southern,
1999], or MALDI-TOF mass spectrometry [Alt-
man et al., 1999]. Despite the fact these
methodologies can be somewhat cumbersome,
they may indeed ultimately identify excellent
target sites.

Selection of accessible sites from random
libraries of oligonucleotides that contained 107

different sequences, which cover all possibilities
in the sequence length of 10 nucleotides [Birikh
et al., 1997; Lima et al., 1997] has been reported.
For example, Birikh et al. [1997] used a
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completely randomized oligonucleotide library
(dN10) in conjunction with RNase H to map
sites that are accessible for oligonucleotide
binding in an RNA transcript. A number of
other studies [Lima et al., 1997; Mir et al., 2001]
have also employed RNase H-based strategies.
Although the experimental approaches for
identification of accessible binding sites offer
clear advantages for targeting ASOs, they do
not necessarily optimize for Rz cleavage activity
(chemical step, kcat, [Campbell et al., 1997;
Clouet-d’Orval and Uhlenbeck, 1997]).

Lieber and Strauss [1995] and Lieber and Kay
[1996] constructed a hRz library that was
targeted to a preselected triplet (GUC) and
which contained randomized sequences in the
annealing arms, allowing the screening of
suitable sites in the target RNA molecule. This
procedure identified both the accessible sites
and the precise position of cleavable triplets, but
reverse transcription, tailing, and polymerase
chain reaction (PCR) were necessary to amplify
the cleavage products. A number of other
reports utilizing random libraries of various
types of Rzs have subsequently appeared [Jar-
vis et al., 1996; Pierce and Ruffner, 1998; Yu
et al., 1998; zu Putlitz et al., 1999; Bramlage
et al., 2000; Mir et al., 2001], including hRz
[Jarvis et al., 1996; Pierce and Ruffner, 1998;
Mir et al., 2001]. In general, while these
experimental approaches offer potential advan-
tages, they often identify very limited numbers
of sites and are generally quite difficult to
perform, and various manipulations (i.e., pri-
mer extension, etc.) might again bias the
results.

We described a SELEX (systematic evolution
of ligands by exponential enrichment) method
to locate accessible sites within any targeted
RNA by systematically isolating guide RNAs
from a large pool of random RNA sequences
[Pan et al., 2001]. Fifty percent of hRz designed
to the identified accessible sites were ‘‘highly
active’’ in cleaving their long, structured tar-
gets, with kcat/Km values of around 106/M�min.
In comparison, none of the hRz directed to
target sites predicted by mFold program showed
high activity. While effective, this SELEX
procedure was quite labor intensive, requir-
ing subsequent PCR and extensive cloning/
sequencing.

Subsequently, we constructed an hRz library
with randomized annealing arms and fixed 50/30-
end flanking sequences (which allow recovery of

bound species) and utilized it in an iterative
fashion. After two rounds of binding under
inactive (magnesium-free) annealing condi-
tions, the selected active Rz library was incu-
bated with target, and the sites of cleavage were
directly identified on sequencing gels. These
selected hRzs generally showed even higher
catalytic activity than those targeted based on
the SELEX procedure [Pan et al., 2003; Pan and
Clawson, 2004].

Using our CLIP [Benedict et al., 1998; Crone
et al., 1999; Ren et al., 1999; Norris et al., 2000],
SNIP and SNIPAA Rz expression cassettes
[Zhang et al., 2002; Pan et al., 2003, 2004],
hRz targeted to library selected sites were
shown to effectively block hepatitis B virus
(HBV) replication within cultured HepG2 cells
[Pan et al., 2001], with major decreases in
HBSAg secretion, viral mRNAs, and viral
DNA. We also documented efficient downregu-
lation of human papillomavirus (HPV) type 16
and 11 E6/E7 transcripts within cultured cells
[Pan et al., 2003, 2004]. More importantly, the
anti-HBV hRz was further tested in vivo, using
an hRz expression construct and a liposomal
delivery vehicle specifically targeted to hepato-
cytes. After injection of SNIPAA-Rzs twice a
week for 2 weeks, an >80% reduction in liver
viral DNA was observed in a transgenic mouse
model, with no evidence of toxicity. Immuno-
histochemical staining for HBV-core antigen
showed a similar decrease in the number of
hepatocytes staining positively, compounded by
a concomitant loss of residual staining intensity
[Pan et al., 2004]. This was significant because
there are so few examples of successful in vivo
applications of Rzs against bona fide naturally
occurring, disease-causing organisms.

Somewhat surprisingly, only a small propor-
tion of Dzs targeted to sites identified by the hRz
library selection have been found to show ‘‘high
activity.’’ For example, only one out of eight was
highly active against HPV16E6/E7 mRNA. Given
this difficulty, a Dz library was designed to
select optimal accessible sites for Dz cleavage.
In comparison to Dz targeted to sites identified
using hRz-library selection protocols, the Dzs
targeted to Dz-library selected sites generally
showed 1–2 orders of magnitude higher activity
in vitro, with the best achieving kcat/Km values
on the order of 108/M�min. In spite of the
perceived inherent advantages of Dzs over
ASOs, however, we have generally not observed
any increased efficacy with Dzs in cell culture
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experiments. The single exception (of perhaps
20) was the most active Dz we have constructed,
named Dz1628, which was based on Dz-library
selection of woodchuck hepatitis virus (WHV)
pre-mRNA. This Dz cleaved essentially 100% of
target both in standard in vitro assays and in
cell culture, where it clearly showed increased
efficacy over the corresponding ASO. However,
in collaborative studies under the auspices of an
NIH antiviral testing contract (with Dr. Tenant
at Cornell), Dz1628 delivered to liver using
hepatocyte-targeted liposomes was without
appreciable effect on WHV infections (not
shown).

Kretschmer-Kazemi Far and Sczakiel [2003]
investigated quantitatively the relationship
between local target accessibility and the extent
of inhibition of the target gene by siRNA. Two
sites of ICAM-1 mRNA predicted to serve as
accessible motifs, and one site predicted to adopt
an inaccessible structure, were chosen to test
siRNA constructs for suppression of ICAM-1
gene expression in ECV304 cells. The concen-
tration dependency of siRNA-mediated sup-
pression indicated a >1,000-fold difference
between active siRNAs (IC50, 0.2–0.5 nM)
versus an inactive siRNA (IC50, 1 mM). This is
certainly consistent with the activity pattern of
ASOs when relating target suppression to
predicted local target accessibility.

Recently, design of a genome-wide siRNA
library for targeting siRNAs was facilitated by
an artificial neural network approach [Huesken
et al., 2005]. An algorithm, trained on a
complementary 21 nt guide sequence set, was
used to design a genome-wide siRNA collection
with 2 ‘‘good-activity’’ siRNAs per gene target.
The collection of 50,000 siRNAs was validated
by identification of genes involved in the cellular
response to hypoxia (see Miyagishi and Taira
[2005] for a succinct description). Development
of such learning approaches are likely to
facilitate future identification of optimized sites
for targeting of siRNAs, although one wonders
whether linear sequence information will be
sufficient.

Library Selection in Cells

Although the in vitro selection methods along
with other advantages are likely to produce
more efficacious ASRs, the selected accessible
sites still leave a gap for cell and animal studies.
Specially for siRNA design, even though
genome-wide siRNA libraries have been con-

structed [Berns et al., 2004; Kittler et al., 2004;
Kronke et al., 2004; Paddison et al., 2004], it has
become clear that shifting of siRNAs by only one
or a few nucleotides can significantly affect its
silencing function, and multiple factors for
siRNA design have not achieved statistical
significance [Holen et al., 2002; Xu et al., 2003;
Kronke et al., 2004; Saetrom and Snove, 2004;
Overhoff et al., 2005]. In addition, the numerous
‘‘off-target’’ effects produced by siRNAs are of
concern. In an attempt to circumvent these
difficulties, we constructed a double-stranded
DNA library which was used to generate an
RNA library with multiple copies of approxi-
mately 4.4� 1012 different sequences. The
library-RNAs, with a central 21-nt region
flanked by defined 50/30-ends, were annealed to
a target RNA and then separated on native gels.
The selected library-RNAs that covered the full-
length of any given targeted RNA (by one
nucleotide shifting) were reverse-transcribed
to cDNAs. The cDNAs were amplified by PCR
for siRNAs and by ‘‘fold-back’’-PCR to construct
their complimentary sequences for short airpin
RNAs (shRNAs), then inserted to our OPIII-
cassette that contains opposing H1/U6 promo-
ters (manuscript in preparation). Using full-
length transcripts of human papillomavirus
HPV16 E6/E7 mRNA, we found that the
selected library-RNAs clearly decreased the
fluorescent intensity of an eGFP/HPV16-E6/
E7 fusion construct in 293 cells. We are now in
the process, using the Flp-InTM system, of
selecting optimally active si/shRNAs with a
minimum of ‘‘off-target’’ effects.

ASR CHEMISTRIES

ASO Chemistry

ASOs (used experimentally) are unmodified
or chemically modified single-stranded DNA
molecules that generally are relatively short
(13–25 nucleotides) and hybridize (at least in
theory) to a unique sequence in the total pool of
target RNAs present in cells. Although it is not a
complicated matter to synthesize phosphodie-
ster oligonucleotides, their use is limited as they
can rapidly be degraded by the intracellular
endonucleases and exonucleases, usually via
30 ! 50 activity [Wickstrom, 1986; Akhtar et al.,
1991; Eder et al., 1991]. In addition, the
degradation products of phosphodiester oligo-
nucleotides, dNMP mononucleotides, may be
cytotoxic and also exert antiproliferative effects
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[Vaerman et al., 1997; Koziolkiewicz et al.,
2001] have demonstrated that the toxic effects
of dNMPs can be correlated with mononucleo-
tide dephosphorylation by the cell-surface
enzyme ecto-50-nucleotidase. In human endo-
thelial cells, and in HeLa cells, this enzyme
dephosphorylates dNMP to the corresponding
nucleoside, which then inhibits the function of
other critical proteins, such as thymidine kinase
[Kara and Duschinsky, 1969], an event that can
result in inhibition of cell growth. For these
reasons, DNA phosphodiester ASOs are gener-
ally not used in antisense experiments.

Many chemical modifications have been
developed in attempts to circumvent these
problems (Fig. 1 shows the modified analogs of
the phosphodiester bond and ribose moieties,
and Fig. 2 shows the backbone modifications).
Phosphodiester bond and ribose modifi-

cations. Methylphosphonate oligonucleotides
(MePO) were the initial chemically synthesized
modified ASOs; they represent an uncharged
oligomer, in which a nonbridging oxygen is
replaced by a methyl group at each phosphorus
in the oligonucleotide chain. Although these
MePO-ASOs have excellent stability in biologi-
cal systems [Miller et al., 1979], the absence of
charge reduces their solubility and their cellular
uptake [Miller et al., 1981; Blake et al., 1985],
which appears to occur predominately via

adsorptive endocytosis [Tonkinson and Stein,
1994] not by diffusion through membranes [Shoji
et al., 1991]. Whereas the absence of charge
eliminates charge–charge repulsions that would
ordinarily occur during the formation of an
RNA–DNA duplex, MePO linkages are also
inherently helix-destabilizing and, most impor-
tantly, cannot activate RNase H activity. These
features severely restrict their utility as ASO
reagents.

Phosphorothioate oligonucleotides (PS) are
the most widely studied ASOs, because of their
nuclease stability and relative ease of synthesis,
in which one of the nonbridging oxygen is
replaced by sulfur in the oligonucleotide chain.
PS-modified ASOs are highly water-soluble
and exhibit increased protein-binding capacity
[Levin, 1999], have improved nuclease resis-
tance and cellular uptake [Zamaratski et al.,
2001; Kurreck, 2003], and can efficiently recruit
RNase H to cleave the target RNA [Zamaratski
et al., 2001]. During the last 2 decades, many
reports have been published using this back-
bone to generate antisense effects both in tissue
culture and in vivo. These data have led to the
introduction of PS-modified ASOs into clinical
therapeutic trials. At the present time, the most
promising of these seems to be G3139 (aka
Genasense, Oblimersen, or Oblimerson), an 18-
mer targeted to the initiation codons of bcl-2

Fig. 1. The modified analogues of the phosphodiester bond and ribose moieties.
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mRNA (now being evaluated clinically for
treatment of melanoma, chronic lymphocytic
leukemia, and other tumors).

Unfortunately, PS-modified ASOs possess a
relatively low binding affinity for target RNA
that impacts on their potency in antisense
applications. Although the majority of ASOs
currently under investigation have PS linkages
at all sites, several modifications to the ribose
moiety of RNA-based ASOs have also been
studied. The two most prevalent are 20-methoxy
(20MeO)-RNA ASOs and 20-methoxyethoxy (20-
MeOE) modified ASOs. Others include 20-O, 40-
C-methylene bridge nucleic acid (BNA/LNA,
[Vester and Wengel, 2004]), 20-O, 40-C-ethylene
bridge nucleic acid (ENA, [Takagi et al., 2004;
Yagi et al., 2004]), and N30 !P50 phosphoroa-
midate (NP) oligonucleotide which results from
the replacement of the oxygen at 30 position on
the ribose moiety by an amine group [Chen et al.,
1995; Gryaznov et al., 1995]. These modified
oligonucleotides are resistant to degradation by
cellular nucleases and hybridize specifically to
their target mRNA with higher affinity than the
comparable phosphodiester or phosphorothio-

ate ASOs. However, their antisense effects
result from RNase H-independent mechanisms.
It has been demonstrated that fully modified
ASOs (i.e., with 20 ribose modifications at all
nucleotide positions) act predominantly by
inhibiting mRNA translation [Crooke, 1999;
Fulford et al., 2000]. However, modified ASOs
with six to eight DNA bases in the center lacking
ribose modification at the 20 position (known
as ‘‘GAPmers’’) efficiently activate RNase H to
degrade the target mRNA [Giles and Tidd, 2001;
Zamaratski et al., 2001; ten Asbroek et al.,
2002]. Like unmodified and fully modified
ASOs, GAPmers form stable duplexes with
target mRNA, although the stability is
decreased with increasing length of the alkyl
chain and with an increasing number of mod-
ified nucleotides in a sequence. These
two chemistries—fully modified RNA oligonu-
cleotides and modified RNA/DNA chimeras
(GAPmers)—dominate the antisense drugs cur-
rently undergoing clinical trials.

Recently, the stereochemistry at the 20-posi-
tion of the sugar of ASOs has been demonstrated
to be a key determinant in the target RNA

Fig. 2. The analogues of the backbone modifications.
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binding affinity and the activation of RNase H.
FANA (20-deoxy-20-fluoro-D-arabinonucleic acid)
analogs represent the first example of a fully 20-
modified nucleic acid that both has high-affinity
RNA binding and that can retain RNase H
compatible properties, suggesting that FANA
may demonstrate potent intracellular antisense
activity [Damha et al., 1998; Noronha et al.,
2000; Wilds and Damha, 2000; Trempe et al.,
2001]. Comparing the properties of ASOs based
on phosphorothioated FANA (PS-FANA) and its
GAPmer of the general structure PS-{FANA-
DNA-FANA}, the latter was found to have
exceptionally potent antisense activity. The
antisense activities of the 20-fluoroarabino
GAPmer were sequence-specific and mediated
by intracellular RNase H. Importantly, unlike
20-O-methylribose chimeric compounds, the
potencies of the 20-fluoro-arabino chimeras were
not limited by the length of the DNA core [Lok
et al., 2002].
Backbone modifications. Stable ASOs

have also been produced that do not possess
the natural phosphate-ribose backbone. PNAs,
or peptide nucleic acids [Pooga and Langel,
2001; Braasch and Corey, 2002], are achiral
neutral molecules that have a backbone similar
to that of poly-amino acids. They have been
shown to hybridize with DNA and RNA with
greater specificity and tighter binding proper-
ties compared to phosphodiester and PS-ASOs,
and are resistant to endo- and exonuclease
activity as well as protease degradation [Kur-
reck, 2003]. Because PNAs are not compatible
with RNase H mechanisms (or other RNases),
the antisense mechanism of PNAs depends on
steric blocking ability. PNAs can also bind to
DNA and inhibit RNA polymerase initiation
and elongation [Hanvey et al., 1992; Boffa et al.,
1996; Cutrona et al., 2000], as well as the
binding and action of transcription factors, for
example nuclear factor B [Vickers et al., 1995].
PNAs can also bind mRNA and inhibit splicing
[Karras et al., 2001] or inhibit translation
initiation and elongation [Gambacorti-Passer-
ini et al., 1996; Good and Nielsen, 1998; Dias
et al., 1999; Mologni et al., 1999, 2001].
Difficulties in use of PNAs in vivo include low
solubility, a propensity to aggregate, and
reduced cellular uptake due to the neutrality
of the PNA molecule, and these drawbacks have
limited their clinical development [Kurreck,
2003]. However, gripNA, a modified PNA dimer
that is comprised of a backbone of alternating

trans-4-hydroxy-L-proline PNA (HypNA) and
phosphoro-PNA (pPNA) monomers with the
bases attached through methylene carbonyl
linkages, has overcome the shortcomings of
poor water solubility and the tendency to self-
aggregate [van der Laan et al., 1996; Efimov
et al., 1998, 1999; Morris et al., 2001].

Another common class of ASOs that is widely
used experimentally (and which has represen-
tatives in early clinical trials (Phase I/II) is
the morpholino phosphorodiamidate oligomers
(MPOs). These have a six-membered morpho-
line ring rather than a ribose, and a nonionic
phosphorodiamidate linkage in lieu of phospho-
diester bonds. Phosphoramidate-modified ASOs,
referred to as morpholinos, have a higher
affinity for ssRNA than phosphodiester ASOs
[Urban and Noe, 2003]. Morpholinos mediate
their antisense effects by blocking protein
translation, without recruitment of RNase H
[Crooke, 1999; Summerton, 1999]. Nonspecific
side effects, including widespread cell death,
have been observed when high concentrations of
morpholinos (5–8 mM final) were injected into
zebrafish embryos ([Heasman, 2002]; and refer-
ences therein). Nevertheless, morpholinos have
displayed limited toxicity in Phase I Clinical
Trials [Iversen et al., 2003].

Rz/Dz Chemistry

A first and obvious limit of the hRz is
represented by its poor chemical stability.
RNA oligonucleotides are hydrolyzed in seconds
or minutes in the presence of cellular extracts or
blood serum, because of the ubiquitous occur-
rence of RNAses [Qiu et al., 1998]. However,
hRz arms can be protected from degradation by
exo- and endonucleases through the introduc-
tion of various types of modified nucleotides like
ASOs. Generally, when these analogs, such as
PS [Shimayama et al., 1993; Heidenreich et al.,
1996; Jarvis et al., 1996], 20MeO [Beigelman
et al., 1995; Usman and Blatt, 2000], LNA
[Wahlestedt et al., 2000], and MPO modifica-
tions [Stein et al., 1997], are introduced solely in
the binding arms, effects on catalysis are
minimal.

As for protecting the ribozyme core from
endonucleases, various studies have shown
that RNases attack primarily the pyrimidine
nucleotides in the core [Qiu et al., 1998;
Heidenreich et al., 1993]. Accordingly, these
nucleotides have been substituted with a vari-
ety of modified analogues (20-fluoro, 20-amino,
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20-MeO, 20-MeOE etc.) to produce stable hRzs.
Contrary to most other modifications in the
core, including the 20-modification of several
purine residues [McKay, 1996], 20-modifications
at nucleotides U4 and U7 are apparently
compatible with efficient ribozyme function
[Pieken et al., 1991]. Mutation of these two
residues, in combination with the introduction
of other protecting modifications, has led to the
development of ribozymes that are both stable
and active in vivo, increasing the half-life of the
ribozyme from a few minutes to days without
serious impairment of catalytic competence
[Flory et al., 1996; Parry et al., 1999]. However,
when the hRZ was subjected to a systematic
‘subtraction mutagenesis’ analysis, in which
each nucleotide in the ribozyme core was
individually replaced with a basic residue,
nearly all of these mutations produced huge
decreases in catalysis, generally larger than
1,000-fold [Peracchi et al., 1998]. Subsequent
work lent further support to the idea of a large-
scale pre-catalytic rearrangement [Blount et al.,
2002] and showed that the activity of the hRz
can be boosted by the introduction of additional
stabilizing interactions, as predicted by the
‘core folding’ model [Khvorova et al., 2003].
The structural instability of the hRz may be an
important limit for therapeutic applications,
even though it is believed that, within the cell,
substrate binding (and release) rather than
the cleavage step is rate-limiting for disruption
of the target. The high sensitivity of hRz
function to structural changes restricts the
kind of modifications that can be introduced in
the core.

Dzs have offered an answer to some of
the limits of conventional ribozymes. First,
Dzs, being made of DNA, are easier and less
expensive to synthesize, while DNA is much
more resistant than RNA to degradation both
in vitro and in vivo. In fact, studies have shown
that, in contrast to hRzs, very stable Dz
constructs can be created via the introduction
of a minimal number of modifications, reducing
the possibility of nonspecific toxic effects. For
example, the 10–23 Dz-motif containing just
30-nt was found to have a half-life of 12–24 h in
100% human serum [Sioud and Leirdal, 2000;
Dass et al., 2002]. The use of other stabilizing
modifications on the ‘arms’ has also been
explored [Oketani et al., 1999; Warashina
et al., 1999; Sioud and Leirdal, 2000; Vester
et al., 2002]. In particular, the introduction of

LNA [Wahlestedt et al., 2000] seems to increase
the Dz efficiency at low concentrations [Vester
et al., 2002]. Moreover, mutagenesis studies
provide a suggestion as to where stabilizing
mutations in the ‘core’ of Dzs would be best
tolerated [Zaborowska et al., 2002].

The superior chemical stability, lower poten-
tial toxicity, and improved catalytic efficiency
make Dzs substantially more attractive than
hRzs as candidates for exogenous applications. A
number of Dzs have been used by several groups
to inhibit gene expression in cell culture [Sun
et al., 1999; Warashina et al., 1999; Toyoda et al.,
2000] and in animal models [Santiago et al.,
1999; Sorensen et al., 2002; Clawson et al., 2004]
by targeting the selective destruction of various
mRNAs. Despite these encouraging results,
their applications are subject to many of the
concerns described above with regard to hRzs.
For example, these small nucleic acids do not
seem to be structurally robust. One recent study
suggested that, under ionic conditions simulat-
ing the intracellular milieu, Dzs were only
partially folded and showed a largely suboptimal
catalytic activity [Cieslak et al., 2003].

siRNA Chemistry

In the past 2–3 years, a number of chemical
modifications have been introduced into siR-
NAs, which preserve their RNAi effects.

For example, activity of siRNAs is preserved
with PS linkages at 50 and 30 ends, and with 20-
fluoro (20F) substitutions at pyrimidines [Har-
borth et al., 2003]. Activity is also maintained
with alternating 20MeO linkages, or with several
PS and 20MeO substitutions at 50 and 30 ends
[Amarzguioui et al., 2003; Braasch et al., 2003;
Hemmings-Mieszczak et al., 2003], although
alternating substitutions with PS have been
reported to produce cytotoxicity [Harborth et al.,
2003]. Activity is also reportedly preserved even
when the sense strand is completely modified
with PS, 20MeOE, or 20F substitutions [Chiu and
Rana, 2003]. RNAi activity can even be induced
with hybrids comprising sense-DNA/antisense
RNA [Hohjoh, 2004], and in fact RNAi activity
has actually been reported to be greater and of
longer duration using such constructs [Lamber-
ton and Christian, 2003]. The potential draw-
back to this strategy is that the antisense RNA
moiety can be degraded by RNase H [Crooke,
2004], so further modifications (as mentioned
above) would seem to be indicated to enhance
stability of the antisense RNA.
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DELIVERY

In order for an ASR to downregulate gene
expression, it must penetrate into the target-
ed cells. However, the precise mechanisms
involved in ASO penetration are not clear.
Early work showed that uptake occurs through
active transport, which in turn depends on
temperature [Loke et al., 1989; Yakubov et al.,
1989], the structure and the concentration of
the ASO [Vlassov et al., 1994], and the cell line.
It is believed that adsorptive endocytosis and
fluid phase pinocytosis are the major mechan-
isms of oligonucleotide internalization, with the
relative proportions of internalized material
depending on ASO concentration. At relatively
low ASOconcentration, it is likely that inter-
nalization occurs via interaction with a mem-
brane-bound receptor [Loke et al., 1989;
Yakubov et al., 1989], and some of these
receptors were purified and/or characterized
[de Diesbach et al., 2000; Herz and Strickland,
2001; Emonard et al., 2005]. At relatively high
ASO concentration, these receptors are satu-
rated, and the pinocytotic process assumes
larger importance. Numerous experiments
have demonstrated that the sine qua non
of antisense activity appears to be nuclear
localization.

Numerous reports have demonstrated that
naked ASOs are internalized poorly by cells
whether or not they are negatively charged
[Bennett et al., 1992; Stein et al., 1993; Gray
et al., 1997]. More specifically, naked oligonu-
cleotides tend to localize in endosomes/lyso-
somes, where they are unavailable for antisense
purposes. Having said that, there is never-
theless a recent report showing efficacious
application of short hairpin siRNAs targeting
Hepatitis C virus using a simple hydrodynamic
transfection of liver cells via tail vein injection of
mice [Wang et al., 2005].

To improve cellular uptake and oligonucleo-
tide spatial and temporal activity, a range of
techniques and transporters have been devel-
oped. Simultaneously, the use of these vehicl-
es increases the stability of oligonucleotides
against nuclease digestion and permits the use
of lower doses (perhaps 10-fold) of ASOs.

The major obstacle to effective antisense
therapies in vivo is clearly effective delivery to
target cells. The first generation of delivery
vehicles developed were liposomes, which are
colloid vesicles generally composed of bilayers of

phospholipids admixed with various agents
and/or cholesterol. Liposomes can be neutral
or cationic, depending on the nature of the
phospholipids. The nucleic acid can be easily
encapsulated in the liposome interior, which
contains an aqueous compartment, or be bound
to the liposome surface by electrostatic interac-
tions [Mahato, 2005]. Cationic liposomes,
because of their positive charge, have a rela-
tively high affinity for cell membranes, which
are negatively charged under physiological
conditions. As these vehicles use the endosomal
pathway to deliver oligonucleotides into cells,
certain ‘‘helper’’ (fusogenic) molecules have
been added into the liposomes to allow the
oligonucleotides to escape from the endosomes;
examples include species such as chloroquine,
1,2-distearoyl-sn-glycero-3-phosphocholine,
and 1,2-dioleoyl-sn-glycero-3-phosphatidy-
lethanolamine, DLinDMA, etc. These ‘‘helper’’
molecules ultimately induce endosomal mem-
brane destabilization, allowing leakage of the
ASO, which then appears to be actively trans-
ported in high concentration to the nucleus
[Fraley et al., 1981; Felgner et al., 1994;
Farhood et al., 1995; Ma and Wei, 1996]. There
are also reports that some ASOs (i.e., those
containing PS modifications) actually shuttle
between nucleus and cytoplasm [Lorenz et al.,
2000], and siRNAs can be exported from the
nucleus by exportin-5-dependent processes [Yi
et al., 2003], so nuclear localization seems to be a
dynamic process.

The use of other cationic polymers, including
poly-L-lysine [Clarenc et al., 1993; Stewart et al.,
1996], PAMAM dendrimers [Bielinska et al.,
1996], polyalkylcyanoacrylate nanoparticles
[Chavany et al., 1992; Zobel et al., 1997], and
polyethyleneimine [Boussif et al., 1995], have
been also developed for drug delivery. Nucleic
acids interact with these vectors via electro-
static interactions. Activity has been demon-
strated in various cell lines [Chavany et al.,
1992; Hughes et al., 1996] and in a nude mice
model [Schwab et al., 1994], but unfortunately,
these polyamines, which appear to cause endo-
somal rupture via a ‘‘molecular sponge’’
mechanism, tend to be somewhat toxic and are
less commonly in use than are the cationic
liposomes.

Therapeutically relevant advances have
recently been described with siRNA targeting
HBV. [Morrissey et al., 2005a,b] employed a
chemically-modified siRNA, wherein all 20OH
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residues on the RNA were replaced with 20F,
20OMe, or 20H groups, and 1-3 ribonucleotides
were placed on the 50 end of the antisense strand
[Morrissey et al., 2005b]. The siRNAs were then
incorporated into stable nucleic acid-lipid par-
ticles (SNALPs), which consisted of a lipid
bilayer of cationic and fusogenic lipids. The
SNALPs were in turn coated with a diffusible
polyethylene glycol–lipid conjugate, which pro-
vided a neutral hydrophilic exterior and stabi-
lized the formulation, preventing rapid
systemic clearance. This formulation was very
effective against HBV in an in vivo mouse
model, and demonstrated a number of advan-
tages, including an extended duration of RNAi
effects in vivo, decreased relative dose, and
reduced dosing frequency. Continued future
formulation development will clearly be the
key to effective clinical applicability of ASR,
although targets other than liver may prove
much more problematic.

All of these cationic delivery systems inter-
nalize ASOs via an endocytotic mechanism. In
alternative ways to avoid the resulting com-
partmentalization problems, consideration has
also been given to modulating plasma mem-
brane permeability. By using basic peptides,
one can increase ASR passage through the
plasma membrane by a receptor- and transpor-
ter-independent mechanism. As these peptides
have membrane translocation properties, cova-
lent coupling with an ASR can increase the
latter’s penetration into the cell, delivering
them directly into the cytoplasm and ultimately
the nucleus. Several of these peptides, such as
the Drosophila melanogaster homeotic tran-
scription factor, the Antennapedia peptide
[Derossi et al., 1998], and the Tat protein of
HIV-1 [Vives et al., 1997], have been identified
and studied. In another example, using fluor-
esceinylated ASOs coupled to the E5CA peptide
(which corresponds to the NH2-terminal seg-
ment of the HA2 subunit of the influenza virus
agglutinin protein), [Pichon et al., 1997] demon-
strated that oligonucleotides were rapidly
taken up by cells and diffused into the nucleus.

PROSPECT

ASRs represent important research tools, and
evolutions of their design, including chemical
modifications and improved target site selec-
tion, have increased their efficacy. However,
while toxicity (at least with ASOs) has not been

a problem, effective clinical therapeutics have
not been developed. This most likely reflects
relatively poor systemic delivery (with the
possible exception of liver). While continued
incremental improvements in liposomal vehi-
cles, as well as development of new nanoparticle
delivery platforms [Luo et al., 2004; Kukowska-
Latallo et al., 2005], particularly the intriguing
nanoparticles based on branched DNA poly-
styrene (see Chiarello [2005]) may well rectify
delivery problems down the road, we suggest
that topical applications of ASRs with suitable
formulations offers a better chance of therapeu-
tic success for the next few years. Successful
development will also likely depend upon the
validity of the animal models used.
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